ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Преобразователи расхода вихревые электромагнитные ВПС

Назначение средства измерений

Преобразователи расхода вихревые электромагнитные ВПС (далее преобразователи) предназначены для преобразования объема и расхода холодной или горячей воды, и других жидкостей с удельной электропроводностью не менее $2 \cdot 10^{-3}$ См/м в электрические сигналы: частотный или импульсный.

Описание средства измерений

Преобразователь ВПС конструктивно состоит из проточной части, выполненной в виде полого цилиндра, в котором по его диаметру установлено тело обтекания, за которым расположен сигнальный электрод. На внешней поверхности цилиндра размещена магнитная система из постоянных магнитов. К проточной части прикреплена стойка, в верхней части которой находится корпус с электронным блоком.

По способу присоединения к трубопроводу преобразователи выпускаются следующих конструктивных исполнений:

- с фланцевым соединением;
- с резьбовым соединением.

Принцип работы ВПС основан на преобразовании частоты отрыва вихрей (дорожки Кармана), образующихся за установленным в потоке телом, в частоту электрического сигнала.

В вихревом потоке жидкости, образующемся за обтекаемым им телом, при взаимодействии с постоянным магнитным полем, образуется переменная электродвижущая сила (ЭДС) с частотой, пропорциональной объемному расходу. ЭДС снимается при помощи сигнального электрода, усиливается и преобразуется микроконтроллером, в соответствии с индивидуальной градуировочной характеристикой преобразователя, в следующие выходные сигналы:

- в частоту электрического сигнала, пропорциональную расходу жидкости;
- в количество импульсов с нормированной ценой, пропорциональное прошедшему объему жидкости;

В зависимости от рабочего диапазона расходов преобразователи подразделяются на две группы: ВПС1 с диапазоном 1:100; ВПС2 -1:50.

В зависимости от используемого выхода преобразователи выпускаются с частотным и импульсным выходом

Питание преобразователей - осуществляется от литиевой батареи напряжением 3.65 В.

Преобразователи ВПС могут быть использованы в качестве первичных приборов в комплекте с тепловычислителем - в составе теплосчетчиков, с вторичным прибором - в составе счетчика - расходомера, а также в автоматизированных системах сбора данных, контроля и регулирования технологических процессов.

Внешний вид преобразователей ВПС различных конструктивных исполнений представлен на рисунке 1.

Архангельск (8182)63-90-72 Астана +7(7172)727-132 Астрахань (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Иркутск (395) 279-98-46 Казань (843)206-01-48 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Краснодар (861)203-40-90 Красноярск (391)204-63-61 Курск (4712)77-13-04 Липецк (4742)52-20-81 Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41

Нижний Новгород (831)429-08-12

Новосибирск (383)227-86-73 Омск (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Пермь (342)205-81-47 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Севастополь (8692)22-31-93 Симферополь (3652)67-13-56

Новокузнецк (3843)20-46-81

Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13 Сургут (3462)77-98-35 Тверь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Ярославль (4852)69-52-93

Киргизия (996)312-96-26-47

Казахстан (772)734-952-31

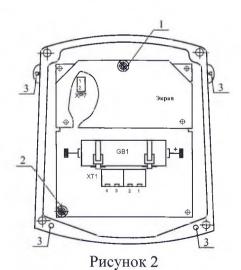

Таджикистан (992)427-82-92-69

Рисунок 1

Места пломбирования корпуса электронного блока приведены на рисунке 2.

- 1- пломба поверителя, исключающая несанкционированный доступ к изменению настроечных параметров;
- 2- пломба ОТК изготовителя;
- 3- отверстия для навесных пломб, устанавливаемых контролирующей организацией.

Номенклатурный ряд преобразователей в зависимости от конструктивного исполнения Таблица 1

Тип	С резьбовым соединением				С фланцевым соединением						
	Ду20	Ду25	Ду32	Ду40	Ду50	Ду65	Ду80	Ду100	Ду125	Ду150	Ду200
ВПС1(2)	+	+	+	+	+	+	+	+	+	+	+

Метрологические и технические характеристики

Таблица 2 - Значения расходов в зависимости от класса преобразователей и диаметра

условного прохода (Ду).

	Расход, м ³ /ч	Ду, мм										
Класс	тасход, м /ч	20	25	32	40	50	65	80	100	125	150	200
	Минимальный дмин		0,15	0,2	0,3	0,5	0,8	1,5	2	3	5	12
ВПС1	Переходный дпер	0,2	0,3	0,4	0,6	1	1,6	3	4	6	10	24
	Максимальный дмакс	10	15	20	30	50	80	150	200	300	500	1200
ロおロビフェ	Минимальный g _{мин}	0,2	0,3	0,4	0,6	1	1,6	3	4	6	10	24
	Максимальный дмакс	10	15	20	30	50	80	150	200	300	500	1200

Таблица 3 - Метрологические характеристики преобразователей

Наименование характеристики	Класс	Исполнение	Значение, в диапазоне расходов		
Пределы относительной погрешно-	ВПС1	стандартное	от $g_{\text{мин}}$ до $g_{\text{пер}} \pm 1.5$ от $g_{\text{пер}}$ до $g_{\text{макс}} \pm 1$		
сти преобразования	ВПС1	специальное	от $g_{\text{мин}}$ до $g_{\text{пер}} \pm 1$ от $g_{\text{пер}}$ до $g_{\text{макс}} \pm 0.5$		
- объемного расхода в частоту вы-		стандартное			
ходного сигнала, %					
- объема в число выходных импуль-	ВПС2	специальное	от $g_{\text{мин}}$ до $g_{\text{макс}} = \pm 0,5$		
сов с нормированной ценой, %					

Дополнительная погрешность, от изменения температуры измеряемой среды	
на каждые 10 °C, %, не более±0,	,05
Диапазон температуры измеряемой среды, °Сот плюс 2до плюс 15	50
Рабочее давление, МПа до	2,5
Гидравлическое сопротивление МПа на расходе 0,5 дмакс не более	01
Степень защиты преобразователей по ГОСТ 14254-96 ІР	65
Исполнение по устойчивости к вибрации по ГОСТ Р 52931-2008 группа 1	N1
Исполнение по устойчивости к климатическим	
воздействиям по ГОСТ Р 52931-2008	C3
Напряженность переменного (50 Гц) внешнего магнитного поля, А/м до 4	100
Средний срок службы преобразователей, не менее, лет	12
Средняя наработка на отказ, не менее, ч	000

Знак утверждения типа

наносится типографским способом на титульный лист паспорта и фотоспособом на шильдики преобразователей расхода.

Комплектность средства измерений

Таблица 4

Наименование	Кол-во	Примечание
Преобразователь расхода ВПС1(2)	1	В зависимости от заказа
Паспорт ППБ.407131.004 ПС	1	
Руководство по эксплуатации ППБ.407131.004 РЭ	1	
Программное обеспечение "МастерФлоу-Сервис"	1	По отдельному заказу

Поверка

осуществляется в соответствии с методикой, изложенной в разделе 8 "Методика поверки" Руководства по эксплуатации ППБ.407131.004 РЭ, согласованной Φ ГУП "ВНИИМС" в апреле 2010 г.

Основное поверочное оборудование:

Таблица 5

Наименование оборудования	Технические характеристики
Установка расходомерная по-	Погрешность не более $\pm 0.3/\pm 0.15$ %. Производительность
верочная ПРУВ ПС-0,05/1000	до 1000 м³/ч. Госреестр № 37986-08
Стенд для гидроиспытаний	давление до 4 МПа, кл.1,0;
Контроллер измерительный	Погрешность измерений интервалов времени $\pm 0.02\%$, по-
КИ-2	грешность счета импульсов ± 1 Госреестр № 28618-10
Генератор сигналов Г3-110	Диапазон частот $0,01\Gamma$ ц200 к Γ ц, нестабильность частоты $\pm 3 \cdot 10^{-8}$. Госреестр № 5460-76
Нутромер по ГОСТ 868-82	Пределы измерений: 1850 мм погрешность ±15 мкм; 50100 мм; 100160 мм; 250-450 мм погрешность ±20 мкм
Термометр ТЛ-4 по ГОСТ 215	Диапазон 050 °C, цена 0,5 °C Госреестр № 303-91
ПК с ОС Windows 98 и выше	Программное обеспечение «МастерФлоу-Сервис»; «Саlibr2002»; «Монитор-Сервис»

Сведения о методиках (методах) измерений

изложены в Руководстве по эксплуатации на "Преобразователи расхода вихревые электромагнитные ВПС ".

Нормативные и технические документы, устанавливающие требования к преобразователям расхода электромагнитным ВПС:

- 1. ГОСТ 28723-90 Расходомеры скоростные, электромагнитные и вихревые. Общие технические требования и методы испытаний.
- 2. ГОСТ Р 52931-2008 Приборы контроля и регулирования технологических процессов. Общие технические условия
 - 3. ТУ 407131.004-29524304-05 Технические условия

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

- при осуществление торговли.

По вопросам продаж и поддержки обращайтесь:

Архангельск (8182)63-90-72
Астана +7(7172)727-132
Астрахань (8512)99-46-04
Б арнаул (3852)73-04-60
Белгород (4722)40-23-64
Брянск (4832)59-03-52
Владивосток (423)249-28-31
Волгоград (844)278-03-48
Вологда (8172)26-41-59
Воронеж (473)204-51-73
Екатеринбург (343)384-55-89
Иваново (4932)77-34-06
Ижевск (3412)26-03-58
Иркутск (395) 279-98-46

Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Краснодар (861)203-40-90 Красноярск (391)204-63-61 Курск (4712)77-13-04 Липецк (4742)52-20-81 Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12

Казань (843)206-01-48

Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Омск (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Пермь (342)205-81-47 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Севастополь (8692)22-31-93 Симферополь (3652)67-13-56 Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13 Сургут (3462)77-98-35 Тверь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Ярославль (4852)69-52-93

Киргизия (996)312-96-26-47

Казахстан (772)734-952-31

Таджикистан (992)427-82-92-69